
Synthesisand implementation of a signal-typeasynchronousdata
communication mechanism

A. Yakovlev, F. Xia andD. Shang
Departmentof ComputingScience

Universityof Newcastle
NewcastleuponTyne,NE17RU, UK

{Alex.Yakovlev,Fei.Xia,Delong.Shang}@ncl.ac.uk

Abstract

Thispaperdescribesthesynthesisandhardware im-
plementationof a signal-typeasynchronousdata com-
municationmechanism(ACM). Such an ACM can be
usedin systemswherea data-driven(“lazy”) logic must
be interfacedwith a time-driven(“b usy”) environment.
A new classificationsystemfor ACMsis introduced.The
conceptualdefinitionof the signal ACM (called simply
“Signal”) is refinedusingPetri nettechniques.Basedon
this, a more precise, stategraphspecificationof a two-
slot Signalis thenconstructed.Usingtheoryof regions,
a Petri netspecificationof theACM is synthesizedfrom
the stategraph. ThePetri net modelis thentranslated
into a hardware implementation,which is entered into
Cadencetools. Simulationresultsshowthat the hard-
ware doesconformto thedefinitionsandspecifications.
The techniquesemployedin this work are potentially
useful in the developmentof an automatedprocessof
synthesisingsimilar systems.

1. Intr oduction

In heterogeneouslytimedsystems,datainterfacesof-
ten needto be maintainedbetweensubsystemsnot be-
longing to thesametiming domain. Theminimal form
of this problemis theunidirectionalpassingof databe-
tweentwo single-threadprocesses.

Whenthetwo communicatingprocessesarenot syn-
chronised,it is oftennecessaryto passthedatathrough
an intermediatedatarepository, usually in the form of
sharedmemory, asshown schematicallyin Figure1.
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Figure 1. Passing data via shared memor y.

An asynchronousdata communicationmechanism
(ACM) is a schemewhich managesthetransferof data
betweentwo processesnot necessarilysynchronisedfor

thepurposeof datatransfer. It is assumedthat thedata
beingpassedconsistsof a streamof individual itemsof
a given type. It is also assumedthat the processesin
questionaresinglethreadcycles,oneproviding andthe
othermakinguseof a single item of dataduring each
cycle. Theproviderof datais known asthe“writer” and
theuserof datais known asthe“reader”of theACM.

Many ACM protocolsand systemsfor classifying
theseprotocolshavebeenproposedin theliterature.One
simpleandelegantclassificationsystemfor ACMs, de-
velopedby Simpsonin [1] and [2], was basedon the
numberof itemsof datain the ACM andits modifica-
tion by the readerandwriter accessesto the ACM. In
this classification,thebasicdatastateis theitemof data
in theACM, which thewriter andreaderaccessesmod-
ify by a systemof “destructive” and“non-destructive”
readingandwriting. The schemeof this classification
is shown in Table1 which is obtainedfrom [1]. In Ta-
ble 1, “N-DR” standsfor non-destructive reading,etc.,
and“Signal”, “Pool” etc. arethenamesgivenby Simp-
sonfor theprotocolsthatdemonstratethecorresponding
writing andreadingrules.

Table 1. ACM protocols classification
based on the destructive-ness of data ac-
cesses

DR N-DR

DW Signal Pool
N-DW Channel Constant

One of the most important real-timepropertiesfor
ACMs is the amountof blocking/waiting the datastate
of the ACM demandsof eitheraccessingprocess.The
datastatecannotholdupthewriter in adestructivewrit-
ing schemeandthe readerin a non-destructive reading
scheme.Thewriter mustwait whentheACM is full if
writing is non-destructiveandthereadermustwait when
theACM is emptyif readingis destructive.

ClassifyingACMs basedon whetherdataaccesses
destroy datain theACM haslimitations,however. One
of themostsignificantshortcomingsof this systemlies
with theroleplayedby thetype“Constant”which in ef-
fect doesnot allow any writing. This hardlyqualifiesas



anACM in theform of Figure1. A modifiedclassifica-
tion systemfor ACMs is proposedin this paperto pro-
vide� a moremeaningfuldualfor theSignalACM type.

Althoughtheprotocolsdevelopedby Simpsonin [1]
implied software implementationsandmostof the de-
tailedACM designsseenin theliterature[3]-[6] indeed
assumeimplementationsin software,thesignificanceof
hardwaredesignsandimplementationshave beengain-
ing recognitionmore recently[7], [10], particularly in
the areaof building systemson chips with heteroge-
neoustiming. ThesepublishedACMs are all of the
Pooltype,which canbeusedto implementtruly atomic
datatransferwith full asynchrony for both the reader
andwriter. This makesthePoolvery muchsuitablefor
transmittingreferencedata,asakind of replacementfor
ananaloguewire holdinga variablevalue.

Thedualto thePool,the“Channel”ACM type,is the
commonno-lossbuffer, mostoftenwith aFIFOarrange-
ment,usedwidely in datacommunications.

A Poolis not suitableif, for instance,thereaderpro-
cessneedsto continueonly whenthereis new dataavail-
able. This may be significant if the readerprocessis
implementedwith anasynchronousdevicewherepower
savingscanberealisedby allowing it to wait whenever
it can,or if thedatabeingtransmittedareof theinterrupt
andexceptiontype.

For such applications,the “Signal” type ACM is
moresuitable.ThebasicSignalprotocoldoesnot hold
up the writer but doesthe readerif the ACM is empty.
ThePoolandSignalarecomparedin Figure2.

Apart from thenew classificationscheme,themajor
contributionsof thispaperarefollowing:

(i) Theconstructionof aPetrinetspecificationof the
two-slotSignal-typeACM usingthe synthesismethod-
ologybasedontheoryof regionsin stategraphs[14, 13].
Thepromotionof this methodologyinto thepracticeof
designingprotocolsandasynchronouscircuitsis crucial
in paving theway for thenew generationof CAD tools
capableof synthesisingconcurrentsystemsin general.

(ii) The implementationof the Petri net model as
anasynchronouscontrolcircuit usinga combinationof
techniques,suchasdirect translationof Petri netsinto
circuitsbasedon David cells (this ensurestransparency
betweenbehavioural specificationandstructuralimple-
mentation)[12] andtheuseof relativetiming (appliedin
a local way in ordernot to jeopardisethe robustnessof
theoverall selt-timedcircuit) in orderto improve speed
of thecontrollogic [19].
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Figure 2. Comparing the applicabilities of
the Pool and Signal.

In the following sections,the definition of the sim-
plestSignal-typeACM, that with capacity1, is refined

by addingspecificationson theeffect of dataaccessing
of onesideto that of the otherside,providing a better
pictureof theblockingcharacteristics.Fromthis refined
definition, a processof systematicsynthesisis carried
out by employing variousstategraphandPetri net [8]
relatedtechniques.

A hardware implementationof the resulting ACM
is thencarriedout andextensive simulationsverify the
salientpropertiesof thecircuit.

2. Newclassificationfor ACMs

An ACM hasa capacity, a non-negative integercon-
stant,whichis thenumberof dataitemsit contains.Each
dataitem an ACM containsis eitherreador unread,at
any time. Thebasicdatastateof anACM consistsof the
numberof unreaddataitemsit contains.

Write dataaccessesaredividedinto writing andover-
writing. Readdataaccessesaredividedinto readingand
re-reading. Writing increasesthe datastateby 1 (one
moreunreaditem in theACM) andreadingdecreasesit
by 1 (onelessunreaditem in theACM) while overwrit-
ing andre-readingdo not modify the datastate. Over-
writing may occur, if permittedby the ACM protocol,
only whentheACM’s datastateis equalto its capacity,
i.e. whenall itemsof datain it areunread.Re-reading
mayoccur, if permittedby theACM protocol,onlywhen
theACM’sdatastateis 0, i.e. whennoneof theitemsof
datain it is unread.

ACMs areclassifiedaccordingto whetheroverwrit-
ing andre-readingarepermittedasshown in Table2.

Table 2. ACM protocols classification
based on overwriting and re-reading per-
mission

NRR RR

NOW Channel Message
OW Signal Pool

In Table2, NOW standsfor nooverwritingandNRR
standsfor no re-reading,etc. The Channel,Pool and
Signalprotocolnamesareinheritedfrom theclassifica-
tion in Table1 andareunchangedin effectivespecifica-
tion. A new ACM type,“Message”,is thedualof Signal.

In termsof theblockingof dataaccessingby thedata
state,if re-readingis permitted(RR) thereis no holding
up of the readerand if overwriting (OW) is permitted
thereis no holdingup of thewriter. If re-readingis not
permitted(NRR), readermustwait whenthe datastate
is 0. If overwriting is not permitted(NOW), writer must
wait whenthedatastateequalstheACM’scapacity.

Comparedto Constantin Table1, the new Message
type is moregeneral.In fact,Constantis a specialcase
of Messagewhere writing is disallowed entirely and
readingis re-readingall thetime.

This classificationis deliberately non-specificfor
dataitemarrangementswithin ACMswith non-1capac-
ities in orderto be asgeneralaspossible.Overwriting



andre-readingin ACMs with capacitiesgreaterthan1
aretreatedasimplementationissuesandnotexploredin
detail
�

here.However, for ACMs with capacity1, which
is themainfocusof this paper, thespecificmeaningsof
overwritingandre-readingareclear.

3. Definition of the Signal

ThebasicSignalprotocolspecifiesanACM with ca-
pacity 1, re-readingnot permittedandoverwriting per-
mitted. In other words, writing can happenwhen the
Signal containseither 0 or 1 item of unreaddata. A
write dataaccessmodifiesthe datastateof the Signal
to 1, but readingcanonly happenwhenthereis oneitem
of unreaddatain theSignal.

This is a specialcaseof thegeneraldefinitionof the
Signalwith capacity� , ����� , of whichthe“overwriting
buffer” schemesfound in many placesin the literature
(suchas[11]) arealsospecialcases.

This basicSignaldefinition is capturedby the Petri
netmodelin Figure3. Heretheplaces“0” and“1” are
complementaryto eachother, oneandonly onebeing
markedat all times.

overwrite

write
read

1

0

Figure 3. Basic definition of the Signal pro-
tocol.

Thisdefinitiontreatsthewrite andreaddataaccesses
asatomicprocesses,which is not sufficiently clear for
systemsynthesisand implementation. In reality, data
accessesby thewriter andreadermusttaketimeandthe
timing relationshipbetweenthe readerandwriter pro-
cessesis importantfor anACM in a real-timesystem.

In otherwords, apartfrom the timing requirements
imposedon thereaderandwriter by thedatastateof the
ACM, dataaccessingof onesidemayaffectthetemporal
behaviour of theotherside.E.g.,thereadermayor may
not berequiredto wait while thewriter is in themiddle
of anaccessbecauseof theimplementation.Themodel
in Figure3 is not specificaboutsuchdistinctions.

In order to reflect the conceptof non-atomicityof
dataaccessesby the writer and reader, suchaccesses
mustbe representedasdistinctive statesin the model.
This is achieved by usingthe techniquesintroducedin
[9]. Sucha refinementis shown in Figure4. By treat-
ing the read and write data accessesasymmetrically,
this definition maintainsthe possibility of full tempo-
ral independencefor the writer, but prescribeswaiting
for the readerwhile eitherwriting or overwriting is in
progress.It alsomeansthat the readerwill alwaysob-
tain thenewestitem of datafrom thewriter availableat
the time of readingandthe writer is alwaysallowed to
accesstheSignal,regardlessof thedatastateof theSig-

nal or the stateof the reader. This definition is usedin
this paper.

1

0

(over)write

notw

read

Figure 4. Signal with non-atomic writing.

By having only one token in the models,it is im-
plied that the writer and readerare dealingwith com-
pleteitemsof dataoneatatimeandtheintegrity of these
itemsof datais maintained,i.e. the readeris not sup-
posedto obtainan item of datathat is assembledfrom
partsof differentitemsprovidedby thewriter, or other-
wisecorrupted.

Formally, thedefinition in Figure4 specifiesthefol-
lowing properties:

1. Datastatesandtheir updating:
TheSignalhasa datacapacityof 1. In otherwords,

atany time, it containseither0 or 1 itemof unreaddata.
At the start of a readdataaccess,the Signal’s data

stateis setto 0 (empty).
At the endof a write dataaccess,the Signal’s data

stateis setto 1, the item of dataprovidedby this write
dataaccessbeingunread.

2. Conditionalasynchrony for thereader:
A readdataaccessmaystartonly whenthedatastate

of theSignalis 1 andno write dataaccessis occurring.
A readdataaccesscanbearbitrarily long.

3. Unconditionalasynchrony for thewriter:
The writer mustbe allowed to startandcompletea

dataaccessat any time, regardlessof the datastateof
theSignalandthestatusof thereader.

4. Datacoherence[3]:
The Signal and the dataaccessesof the writer and

readerprocessesmust not modify the contentof any
item of data. In otherwords,any item of datareceived
by the readermustnot have beenchangedsincebeing
providedby thewriter.

5. Datafreshness[3]:
Any readdataaccessmustobtainthe dataitem des-

ignatedas the current unreaditem in the Signal, i.e.
the item of datamadeavailableby the latestcompleted
writer access.

In the terminologyof multi-slot ACMs [3], a “data
slot” is a uniqueportion of the sharedmemorywhich
maycontainoneitemof data.It is obviousthataSignal
in theform of Figure4 cannotbeimplementedwith only
one dataslot, sinceit cannotpossiblysupportwriting
andreadingat the sametime andmaintaindatacoher-
ence.In otherwords,properties3 and4 cannotbothbe
satisfiedby animplementationwith only onedataslot.

Previous work has indicatedthat it is desirableto
minimisethenumberof slotsin multi-slot ACM imple-
mentations[7], [10]. The advantagesinclude smaller



hardwareexpenditurebothin theactualslotmemoryar-
easandcontrol circuits, leadingto bettertemporalper-
formance
�

andhigherreliability.
Most of the softwaresolutionsin the literaturealso

spendconsiderableeffort in the reductionof the num-
berof slotsneededfor any particularACM specification,
with similar reasons.

It is thereforeimportantthata solutionwith just two
dataslotsbefoundif possible.

4. Stategraph specificationof Signal

Theconceptualdefinition of Signalin Figure4 can-
not beusedasa formal specificationof theSignalpro-
tocol becauseit doesnot show thespecificsof this pro-
tocol, suchashow, for example,blockingon writing is
avoidedby usingmultiple slots. In this sectionwe con-
structa stategraphspecificationfor a two-slot Signal,
which will definea maximally permissibleautomaton
satisfyingthe requiredpropertiesof the ACM. Let us
first formulatethosepropertiesusingthe ideaof states
andtransitionslabelledby write andreadactions. The
reasonfor usingstategraphfor specifyingtheACM pro-
tocolinsteadof trying to constructthePetrinetmodeldi-
rectly is explainedasfollows. Stategraphmodellingis
muchclearerfor reasoningabouttheglobalpropertiesof
thesystemthanthatin Petrinetsbecauseastategraphis
basedontheconceptof globalstatesandinterleaving se-
mantics.A Petrinetwould alreadybea decomposition
of the system’s statesinto local states(places)andthis
is oftennon-trivial whensystemsconsistof anumberof
processes(write andread)andcomponents(slots).

Actions: Actionsareprocesseswhosestartandcom-
pletionareatomiceventsandwhosedurationsarefinite
but non-atomic.

States: A stateis theresultof thecompletionof one
or moreactions.During a state,theremayexist actions
which have startedbut not completed(in process)and
theremayexist actionswhich maystart.These“in pro-
cess”and“may start”actionscannotcomplete,however,
without resultingin anew state.

Previous sets: Theprevioussetof a state� , denoted
as 	�
 , is thesetof actionsthatleadto � .

Next sets: The next setof a state � , denotedas � 
 ,
is thecombinedsetof actionswhich maystartduring �
andactionswhich maybein processduring � .

In this paper, the slotswill be known asslot 0 and
slot 1; write dataaccessto slot  is known aswr  where
�������� ; readdataaccessto slot � is known asrd� where
��������� . Thesearethe only actionsconsideredat the
moment.Soduringeachwrite cycle thewriter performs
oneactionwr  with some andduring eachreadcycle
the readerperformsoneactionrd� with some� . With
theseassumptions,propertiesoutlined in the previous
sectionrequirethefollowing conditions:

1. Datastatesandtheir updating,andasynchrony for
readerandwriter:

wr ��� 	 
�� rd���� � 
 , ��� ,  and � ; this meansthat if a
statewasnot the resultof a completionof a write data
access(i.e., it is solely the result of the completionof

a readdataaccess),thena new readdataaccesscannot
startduringit (datastate��� ).

wr  � � 
 , ��� ; thismeansthatawrite dataaccessmust
beallowedto startor bein processduringany state.

2. Datacoherence:
� � wr  � �!
#" rd� � �$
 ) ���%�&#�'� and ��(� ; thismeans

that therecanbeno simultaneousreadandwrite access
of any slot.

3. Datafreshness:
wr  � 	�
)" rd� � 	�
 � wr� � �$
#" rd � �!
 , ��� and

�*� � ; this “slot swapping”fully utilisesthetwo available
slotsso that the readeralwaysobtainsthe item of data
providedby thelatestcompletedwrite dataaccess.

4. No “retry loops”:
rd� � � 
,+ " rd�-�� 	 
/.%� rd0�� � 
 , ���21 preceding� ,

�*� � , andfor all �23 on the statetrajectorybetween�21
and � , including �21 ; this is alsotrue for write dataac-
cesses.

Condition4 reflectsthedesireto avoid “retry loops”
[6], so as to keepthe solution simple for this first at-
tempt. It meansthat,oncethereader(or thewriter) has
beenallocateda slot for access,it mustperformthis ac-
cessbeforeit canbeallocatedtheotherslot for access.

A simplestategraphspecificationhasbeenobtained
from theseconditions. It conformsto the definition in
Figure4 andis shown in Figure5. Theinitial states1is
labelledwith a big arrow. In this state,the ACM starts
as“empty” with only writing to slot1 enabled.

rd0

s0

s1

wr1

wr1
rd0

s2

s3 s5

s0s4

wr1

rd1

wr0

wr0

wr0

rd1

Figure 5. Simple state graph specification
for a two-slot Signal (s0 is initial state).

In Figure 5, the dotted edgedenotesthat the two
statesat its endsareessentiallythe samestateandthe
stategraphis in closedform for readability.

All conditionsmentionedabove have beenincorpo-
ratedinto the specification.For instance,at states2 in
Figure5, rd1 cannotbe in thenext setbecauserd0 was
in thenext setatstates0andhasnot featuredin thenext
setof any stateon the trajectoryfrom s0 to s2 (Condi-
tion 4). At states1,no readerslot accessis in thenext
setbecausethereis no writer actionin its previous set
(Condition1).

This specificationis not detailedenoughfor imple-
mentation,becausethe actualmeanswhich maintains
the slot steeringfor the writer andreaderprocessesre-
main undefined. A further refinementis obtainedby
adding “silent actions”, which perform the necessary



functionsof theslot-managementcontrolvariablestate-
mentsusedin publishedmulti-slot ACMs [3]-[7]. The
result4 of this refinementis shown in Figure6. This re-
finementwill alsobeneededin orderto satisfythesepa-
rationconditionsfor Petrinetsynthesis,describedin the
following section.
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Figure 6. “Distrib uting” states between
reader and writer par ts using regions.

Both halvesof Figure6 show the samestategraph.
Thereasonfor duplicationis simply to avoid cluttering
whenderiving regionscorrespondingto the actionsre-
latedto write andreadparts(cf. next section).In Figure
6, the 5 ’s denotesilent actionsperformedin the write
part that separatethe stateswith the sameconnections
to themainactionsof dataslot accessing.For instance,
5 0 is thecontrolactionthatpreparestheSignalfor giv-
ing next accessto slot 1 to the readerandnext access
to slot 0 to the writer. Before 5 0 writer wasallocated
slot 1 andreaderwasallocatedslot 0. The 6 ’s denote
silentactionsperformedin the readpart. For example,
6 1 standsfor the requestof the readerto start reading
slot 1, andalsothefact thatslot 0 is no longerusedfor
reading.This shouldindicateto thewriter thatit should
move to slot 0 if it hasfinishedor whenit finisheswith
slot 1. Hence,dependingon whetheraction 6 1 hasor
hasnotbeenperformedby thereader, thewriter decides
whetherto do 5 0 (move to writing slot 0) or to do 5 3
(keepwriting slot 1).

5. Petri net specificationsynthesis

If we try to synthesisea hazard-freecircuit in order
to implementthestategraphmodelin Figure6, weneed
to encodethisstategraphandperformlogic synthesisof
the circuit. Unfortunately, this is not a trivial tasknot
only becauseof theproblemwith race-freeencodingof
thesymbolicstateswith binarysignals,but alsobecause,
as one can easily observe from this graph, it involves
non-trivial arbitrationconditionsin thestateswhere 5 1
and 5 3 areenabled(viz., theactionof thewrite partde-
pendson the completionof the appropriate6 actionof
thereadpart).Our approachwill follow a two-steppro-
cedure,describedin [12], whichfirstly constructsa“dis-
tributedandconcurrentsystem”(in the form of a Petri

net)from the“sequentialandcentralised”description(in
the stategraphform), and thensyntacticallytranslates
this Petri net into a self-timedcontrol circuit. The first
stepis describedin this section,thecircuit synthesisin
thefollowing section.

Theobjectiveof Petrinetsynthesisis to obtainaPetri
net in which transitionsarenamedby the labelsof the
arcsin the stategraphspecification,andwhosereach-
ability graphis equivalent to the stategraph(different
formsof equivalence,suchasisomorphismandbisimi-
larity, have beenstudied,e.g.,in [13]). Informally, such
synthesisis a decomposition,or distribution, of global
statesof the stategraphinto local statesof the system
thatcanbeassociatedwith placesin thePetrinet.More
formally, synthesisis basedon the conceptof regions
in transitionsystems,originatingfrom [14], andregions
haveone-to-onecorrespondenceto placesin thesynthe-
sisednet.A region is a subsetof statesin which all arcs
labelledwith the sameevent 7 have exactly the same
exit/entry/internalrelationship.Dependingon this rela-
tion to a particularevent 7 a region 8 is called a pre-
region(post-region,co-region)of 7 if 8 is exitedby (en-
teredby, internalfor) 7 . Forexample,thesubsetof states
labelledwith 6 in Figure6 is apost-region for event 5 2,
pre-regionfor event 5 0 andco-regionfor eventswr1, 5 3
andrd0.

It is known from [13] that, in orderto generatea 1-
safePetrinet(anetin whichplacesnevergetmorethan
onetokenin everyreachablemarking)whosereachabil-
ity graphis isomorphicto a givenstategraph,thestate
graphmustsatisfytheimportantpropertiesof stateand
eventseparation. Informally, thestateseparationprop-
erty requiresthat for any two differentstatestheremust
exist a region which containsoneof thestatesanddoes
not containtheother. Theeventseparation(alsoknown
asforwardclosure)propertyrequiresthat,for everystate
� andevery event 7 , if the setsof pre-regionsandco-
regionsof 7 areincludedin thesetof regionssuchthat
eachof themcontains� , then 7 mustbeenabledin � (i.e.
theremustbeanarcleadingfrom � labelledwith 7 ).

The basic procedureto producea 1-safePetri net
from a stategraphsatifying the above propertiesis as
follows:

1. For eacheventlabel 7 in thestategraphatransition
named7 is createdin thePetrinet.

2. For eachregion 8 aplacenamed8 is generated.
3. Place8 is connectedwith a transition 7 by anarc

goingfrom theplace(transition)to thetransition(place)
if region 8 is pre-region (post-region) for 7:9 Place 8 is
connectedto 7 by abidirectionalarc(self-loop)if region
8 is aco-region for 7 .

4. Place8 containsa token in the initial markingif f
the correspondingregion 8 containsthe initial stateof
thestategraph.

This (canonical)procedure,if applied,would gener-
atetheso-calledsaturatednet[13], sinceall regionsare
mappedinto correspondingplaces.A saturatednetmay
have a lot of redundancy, in the sensethat someof its
placesmay be removedwithout disturbingthe isomor-
phismbetweenoriginal stategraphandthereachability



graphof the synthesisednet. Differentcriteria canbe
appliedwhenbuilding a minimal Petri net (in termsof
the
;

netsize).For example,thecriterionto simply guar-
anteethe stateandevent separationpropertiesanduse
only minimal regions(regionswhich arenot unionsof
other regions) is implementedin the Petrify tool [17].
Theresultof suchsynthesisis shown in Figure7.

wr1

wr0

λ3

λ0

λ1
µ0

µ1

λ2 rd0

rd1

Figure 7. Petri net specification from Pet-
rify .

This Petri net usesplacesthat correspondto mini-
mal regions in the stategraph of Figure 6 (note that
the regions depictedin Figure 6 by the dashedboxes
arenot all minimal - cf. regions5 and6). This net re-
flectsthearbitrationcasesbetween5=< and 5>� , basedon
thestateof the 6 1 operation,andsimilarly between5?�
and 5>@ , basedon thestateof 6 0. Thetechniquesavail-
able for direct translationof Petri nets into self-timed
circuits, describedin [12], cannotbe easilyappliedto
this net,however, becauseof theproblemof finding an
adequatecombinationof hardwarecomponentsto im-
plementthesearbitrations.We have lookedat an alter-
nativePetrinetdescriptionthatcouldbeproducedusing
the regions shown in Figure 6. The net generatedby
theseregions is shown in Figure8. This net also sat-
isfiesthesynthesisproblemrequirements(its reachabil-
ity graphis isomorphicto thestategraphspecification),
andalthoughit is not minimal in termsof the number
of placesused,it hasa very interestingpropertyfrom
the point of view of its possibleimplementation,par-
ticularly in hardware. This net is essentiallyformedby
two subsetsof places,onebelongingto thewrite actions
(places1 to 6) and the other to readactions(places7
to 12). Thesetwo (finite-state-machine)subnetsinteract
by usingbidirectionalarcs,whicharealsoknown astest
or readarcs.

This way we have effectively decomposedthe sys-
teminto two partsthatcommunicatethroughtwo binary
variables,w (write) andr (read)that canbe associated
with two pairsof complementaryplaces,5 and6 for the
zeroandonestatesof w, and7 and8 for the oneand
zerovaluesof r. It canalsobe seenthat the 5 transi-
tions arepart of the write actionsandthe slot steering
mechanism.They testther signalandswitchthevalue

of thew. Similarly, thereadactionsaretheactionsthat
testthew signal,while alsoswitchingthestateof the r
signal. This Petri net canbe usedto derive the circuit
implementation,following thetechniquesof [12].
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Figure 8. Petri net specification of a two-
slot Signal.

6. Cir cuit synthesis

In thesetwo sectionswe outline the processof con-
verting the Petri net modelof the Signal into an asyn-
chronouscircuit. ThefactthatthePetrinetalreadycap-
turesthenotionof a “decomposedstate”in its placesis
exteremlyimportantbecausewe canexploit this distri-
bution in the“net-to-circuit” translation.

Our first “sketch” of the Signal’s circuit implemen-
tation,which is basicallya homomorphictranslationof
thePetrinet in Figure8, is shown in Figure9. Thecir-
cuit is built with two-phase(event-based)signalling in
mind (see[15]). It consistsof the control skeletonpart
andtheoperationalpart,involving thewrite andreadop-
erationsandthelatchesthat implementvariablesw and
r. Theselatchesareequippedwith pairsof control sig-
nalsfor setandresethandshakes,labelled“+” and“–“
(notethat thesehandshakesensurethatbothsettingand
resettingof w andr areproperlyacknowledged). The
latchesalsoproduce“dual-rail” signals,r0 (whenr=0)
andr1 (r=1) for r, andsimilarly for w. The write con-
trol part (seelabelling of wires by numbers1-4) is ob-
tainedby simply associatingplaces1 and3, whosein-
put transitionsfire in a mutuallyexclusivemanner, with
XOR gates,andplaces2 and4 with requeststo two ‘arb’
blocks,which arearbitersfor samplingthe (potentially
changing)levelson signalsr0 andr1, anddependingon
the ‘r0=true’ or ‘r1=true’ stateof the test,generateone
of the event-basedoutputscorrespondingto the appro-
priate 5 transition.Thesesignalstheneitheractivatethe
appropriatewrite operation,eitherwr0andwr1,depend-
ing on which of thetwo slotsis supposedto bewritten,
or sendarequestto toggle(setor reset)thestateof w. In



thereadpart, thecontrolflow is very simple(notewire
labels7-11to indicatecorrespondencewith appropriate
placesA in thePetri net)andit doesnot needarbitration.
It awaits,at oneof the event-basedTL (cf. transparent
latch) gates(initially, it is the left one,associatedwith
the initial positionof the token in the readpartat r=1),
thearrival of theconditionw0 (whenw=0) to beat1 and
thenactivatesthe rd1 operation,followed by the reset-
ting of ther variable.After thatit performssimilaracton
with r0 assoonasthew signalbecomes1.

+

−

+
−

wr0

rd1 rd0

TL TL
wr1

λ2λ1λ3 λ0

arb arb

r1
r0

w0

µ0

hs hs

hs hs

w1

3 1

4 2

7
9

10
µ18

Figure 9. Bloc k diagram of fir st cir cuit de-
sign.

This implementationis very schematic.In order to
build thecompletecircuit for theSignalfrom it, it needs
to berefinedby providing interconnectionswith thetwo
environmenthandshakes, write’s requestand ack and
read’srequestandack,whichareimplicit in thiscircuit.
Thosetwo handshakescouldbecreatedby breakingthe
wiresthatareindicatedin Figure8 by theovalslabelled
with hs. Of course,to form just a singlereq/ackpair on
eachside,thosedoublepairsneedto besuitablymulti-
plexedby usingknown two-phaseelements,suchase.g.
CALL from [15].

Wehavealsostudied,atgreaterlength(believing that
thiswill giveusafasterimplementation),anothercircuit
translationof thePetrinetmodel,theonebasedonfour-
phasesignalling. This translationmethod,describedin
[12], is basedon theideaof a ‘one-hot-encoded’imple-
mentationof thePetrinetmodel,in which placesof the
Petri net are associatedwith memoryelements(called
David cells, cf. [16]) of the control circuit. This ap-
proachdiffersfrom theSTG-basedlogic synthesiswith
its ‘compact’ statecodingusedin Petrify [17]. Our at-
temptto follow thelatterhasresultedin overly complex
gates,whosesimplegatedecompositionrequiresto sac-
rifice speed-independencesignificantly, andthuscannot
guaranteethedesiredlevel of robustness.Furthermore,
webelievethatthisdesignexamplewill provideuswith
a goodbenchmarkwith which we candemonstratethe
potentialfor a new synthesisfrom Petrinets,leadingto
future improvmentsin Petrify, proposedin [18]. In the
remainderof thepaper, we will concentrateon this de-
signof theSignalACM, which is eventuallybroughtto

a CMOSimplementationusingCadence.

7. Hardware implementation and simula-
tion results

Thestructuralideaof thecircuit implementationfor
Signalis shown in Figure10. Thereadpartis conceptu-
ally simplerthanthewrite partandits descriptionis left
out. Thewrite part,whosePetrinetspecificationcanbe
tracedbackto Figure8, isshown in Figure11. It consists
of a setof David cells(showedin bold) to storethedis-
tributedstateof thecontrolandblocksrepresentingthe
controlledlogic. The controlled(operational)logic is
simply insertedbetweenthecells,by breakingthewire
that signalsthe next cell aboutthe arrival of the token.
Note,e.g.,theinsertionof blockswr1 andwr0 aftercells
dc0anddc1.Notealsothattheenvironmentitself is ‘in-
serted’betweencells (ashandshake “done-wr”). Let’s
considerfirst theDavid cell part.

data in

w

testpart

write
wr

wr_done

wr0

wr1

r

test

data out
mux

read
part rd_done

rd

rd0
slot0

slot1 rd1

set/clear

set/clear

Figure 10. Bloc k diagram of Signal cir cuit
implementation.

Thesecells,built essentiallyaroundSRflip-flops(cf.
Figure13), representthe markingof the corresponding
placesin the Petri net (the absenceof a token in place
is associatedwith state01 in the flip-flop, the presence
with state10). The labelsof suchplacesareshown in
circles. In particular, blocks odc0 and 0dc1 standfor
the cells correspondingto places2 and 4. Block 2dc
encapsulatestwo cells that model places1 and 3 (the
internallogic structureof this block is shown in Figure
12). Thetwo pairsof sdccells,labelledwith 43 and41,
21 and23 respectively, areaddedin orderto implement
theappropriatebranchingof a tokenfrom place4 either
to place3 or to 1 (similarly, for a tokenfrom place2 to
eitherplace1 or 3) dependingonthearbitrationdecision
madein the ‘sync’ block, which samplesthe valueof
the output r (rbar) of the binary variable‘read’. Such
a samplingcorrespondsto testingthemarkingof places
11 and12(by readarcs)by transitions5 3 and 5 0.

Thecellsnamedsdcareall built usingasimplelogic
structureshown in Figure 13; they model the ‘linear’
passof the control token. The cells namedodc0 and
odc1areslightly morecomplex andallow mergeof ac-
knowledgementsfrom two mutuallyexclusivebranches
of tokenflow (from places4 and2). For example,cell
odc1(for place4) caneitherberesetto 0 afterthepush-
ing of the token back to place3 (via the sdc cell 43)
or to place1 (via sdc cell 41), the latter also involv-
ing the executionof setw (event 5 2 in the net). This
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Figure 11. Circuit implementation of the
write par t using David cells.

is shown schematicallyby depictingimagesof OR gate
at the resettinginput of cell odc1, which collectsack
signalsfrom thesdc’s 43 and41. Implementingsucha
morecomplex resetfunctionrequirestheuseof 3-input
NANDs in placeof elementxb Figure13.

The operationof the control logic basedon David
cellscanbevisualisedby performingasequenceof tran-
sitionsonthecellssignalsasshownin Figure13. Thear-
rival of thetokencorrespondsto theleft-handsidehand-
shakerequestw goingto 0.

Thedottedconnection(from outa)in all David cells
shouldbe disregardedwhen the circuit is built maxi-
mally speed-independent.However addingsucha con-
nectionwould introducearelatively ‘mild’ delaydepen-
dency (cf. relative timing [19]), concernedwith thefact
that the returnof x backto its quiescentstate(0) is left

2dc
(0)

(1) (0)

odc1 odc0wr wr1 wr0

(1)

slot0 slot1

Figure 12. Logic for the 2dc bloc k

unacknowledged.The gain from this is that transitions
xb+,x- in theabovesequenceareexecutedconcurrently
with the forwardpropagationof the token. Underreal-
istic delaysin the gates,evenwith a zerodelayfor the
controlledoperationsbetweenthe cells, thereis ample
time to completethosetransitions(resetof the token)
beforethe ‘front’ of thenew tokencomesbackthrough
thecontrolloop.

inr− x+ xb− ina− inr+

outa− outr−xb+ina+

x− outr+ outa+

x xb

ina

inr

outa

outr

"mild" relative
timing

Figure 13. Simple David cell (with extra
wire for a ‘mild’ relative timing assump-
tion).

A bit more ‘aggressive’ relative timing is applied
whenthe‘front’ of thetokenis allowedto propagatefor-
wardassoonasit hasbeenrecordedin thecell, without
evenwaiting for thecompletionof theprecedinghand-
shake. Again, underrealisticdelays,andassumingthat
the operationalpart takes at leasta coupleof inverter
delays,this shouldbe sufficiently robust. The modi-
fied logic of the caseof a simple cell (linear transfer)
is shown in Figure14. Herethedelayof passingtheto-
kenthroughthecell is absolutelyminimal - it takestwo
inversions,x andxb, from inr- to outr-.

inr− x+ xb− outr− outa−

xb+ina+ ina− inr+
x−

x xb

ina

inr

outa

outr

Figure 14. Simple David cell with ‘aggres-
sive’ relative timing

Extensive analoguesimulations(for 0.66 m CMOS
technology)have beenconductedon two circuit imple-
mentations,onemaximally speed-independent(SI) us-



ing simpleDavid cells(Figure13)andtheotherwith ag-
gressive relative timing (RT) usingthecircuit in Figure
14B whenpossible.Bothimplementationshavebeencon-
firmed qualitatively to satisfy the specifications.Their
relevantfull (write, read)cycle timesaregivenin Table
3. Thesetimesaremeasuredbetweentheadjacentrising
edgesof thewrite requests(write_start+C write_start+)
and read requests(read_start+C read_start+). For
writestwo modesconsideredarethosethatdo (SR)and
do not involve (NSR) switching(setor reset)the value
of flag w. For reads,which canbenaturallyblockedby
absenceof new data,only onemode,called“no waiting”
for new data(NW), is considered.

Table 3. Cycle times (in ns)
type Write Read

NSR SR NW
SI 9.0 10.4 9.0
RT 4.8 6.3 6.6

In systemswith true timing heterogeneity, metasta-
bility in the‘sync’ arbitersis unavoidableif oneor both
sites of an ACM are permittedunlimited access. In
our implementation,metastabilityis containedwithin
the ‘sync’ arbiterblocks(Figure15) andanaloguesim-
ulations(Figure16) confirm that it doesnot propagate
throughthesystem.Note that,afterwrite requestis set
to high andck0 is generatedin orderto samplethecur-
rent valueof variabler, the latter is making its transi-
tion from high to low (seethe “input to mutex” win-
dow). This putstheSRflip-flip (we usea standardmu-
tex implementationdueto Seitz[20]) into a metastable
state(seethe upperwindow), which is eventually re-
solved in favour of rbar_0,i.e., the old value(high) of
r. Theoutputsof themutex, rbar_0andrbar_1,produce
cleanedges.Thesesignalsarethenusedto generateack
signalsleadingto the control logic, which in this case
passescontrol to oneof theDavid cellssdc,labelled21
and23, to performeithernothingor ‘setw’ (settingw to
1), followedby theriseof thewrite_acksignal.

mutex
rbar_1
rbar_0

(r=0)
(r=1)

λ2
λ1

ck0

rbar

Figure 15. Implementation of a 4-phase
‘sync’

8. Message,the dual of Signal

Thenew ACM classificationof Table2 madeit pos-
sibleto definea moreusefuldualfor theSignal.This is
thenew Messagetypewhich permitsre-readingbut not
overwriting.

The Messagethereforedoesnot hold up the reader,
but doeshold up thewriter whenthedatastateis equal

metastability inside mutex

write response time

input of sync

output of sync

Figure 16. Illustrating metastability

to the ACM’s capacity (all data items in the ACM
unread). Such an ACM is useful when loss of data
itemsis notpermittedandwhenthereaderprocessmust
be given temporalindependencefrom the ACM’s data
state. Roughly speeking,from the writer side, new
“Messages”maynot begeneratedif previousoneshave
not beenreceived, as comparedwith “Signals” being
generatedregardlessof if previous oneshave beenre-
ceived. The reader, on theotherhand,won’t wait for a
new Messageto appearbut will re-usethepreviousone
if needed,but will stopandwait for a new Signalif one
is not available.

Obviously, the Messageis a simplemirror imageof
the Signal. The definition modelsin Figures3-4 can
be simply reversedto form similar definitionsfor a 1-
capacityMessage,andit canbesaidthattheimplemen-
tation above is alsothat of a simpleMessagewith full
asynchronismfor thereader. It justneedto beconnected
to the writer andreaderprocessesthe otherway round
from theSignal.

9. Conclusion

A new systemof classifyingasynchronousdatacom-
municationmechanismshasbeenproposed.Techniques
for thesynthesisandimplementationof ACM protocols,
only partially formalisedand to a large extent unauto-
mated,have beenpresentedhere. The overall design
proceededalongthefollowingsteps:(1) conceptualdef-
inition (usingPetri net ‘sketches’);(2) constructionof
thebasicprotocolspecification(usingastategraph);(3)
refiningthestategraphwith silentactions;(4) synthesis
of a Petri net specification(usingregions); (5) transla-
tion of the Petri net model into a circuits usingDavid
cells;and(6) enteringthedesigninto Cadenceandsim-
ulation. The model transformationsteps(2-4) arecur-
rently only supportedto a very limited extentby Petrify
synthesissoftware. The refinementwith silent events,
to make thestategraphsynthesizableinto a Petrinetof
a givenclass,is a very challengingtheoreticalproblem
andmoreresearchis neededhere.Thedirecttranslation
of Petri netsinto David cells andsubsequentoptimisa-
tion with relativetiming is anotherproblemto betackled



in thefuture.
A simpleSignalACM, usingonly two dataslots,has

been
D

synthesisedand implementedin hardware. The
sameACM, if connectedin reverse,can also serve as
a Message,the dualof Signalin thenew classification.
With the previous resultsreportedin [7] and [10], ex-
amplesof all the non-trivial ACMs in the new classi-
fication have beenimplemented.This further enriches
the knowledgeaboutACMs andtheir hardwareimple-
mentations. The latter provide an efficient and robust
meansof on-chip interfacingbetweendata-driven,and
thuspower-saving, logic anda time-drivenenvironment
or betweensubsystemswith independenttemporaldo-
mainsin highly timing heterogeneoussystems.
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