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ABSTRACT

A multiway arbiter may be constructed from an interconnected
structure of inverting gates which is a generalisation of the bistable
flip-flop.  Features of the dynamic behaviour of such a ‘multi-flop’
are illustrated by analysis and simulation based on a very simple
non-linear dynamic model of each gate. Limitations of such a
component as an arbiter are explained.

1.   INTRODUCTION

1.1  The Multiflop

A symmetric cross-coupled structure of n gates which is a direct
generalisation of the bistable flip-flop can be used as a ‘1 out of n’
arbiter to enforce mutual exclusion in distributed and multi-tasking
computing systems.  Van Berkel and Molnar [1] have pointed out
problems of metastability and unfairness associated with the three
gate (‘1 out of 3’) structure, illustrating them by a SPICE
simulation of realistic CMOS gates.  Davies [2] has shown some
aspects of the behaviour of these ‘multi-flops’ derived from
simulation of a simple gate model. This paper presents a more
detailed analysis.

Figure 1.   Four-flop structure

A four-flop based on NAND gates is shown in Figure 1.  When all
the inputs are held at logic-zero (Vlow), the outputs are all forced to
logic-one (Vhigh).  If any single input is raised to logic-one, the
corresponding output goes to logic-zero.  When all inputs are at
logic-one, there are n stable states, each one having a single output
at logic-zero.

1.2  Requirements of an Arbiter

Multi-processing systems typically require access to shared
resources or services subject to a restriction that at most one
process can have access to a particular resource or service at any
time.  An arbiter is used for implementing such access control.
When any process requests access the arbiter responds by issuing a
‘grant’ signal if the required resource is available.  If the resource
is busy, the arbiter delays the grant until the release of the resource
has been signalled by the process using the resource (and by any

other already-waiting processes having equal or higher priority to
the new one).  Figure 2 illustrates this for a three-way arbiter.

process
3

process
2

process
1

shared
resource

Tri-flop
(arbiter)

grant

request /
release

Figure 2.  Controlling mutually-exclusive access to shared
resource

The design of two-way arbiters is well established, often based on
a bistable flip-flop, with design precautions to minimise the
probability of metastability in the case of asynchronous systems.
A multi-way arbiter may be made from networks of two-way
arbiters, but this results in increased latency in response to
requests, and a direct implementation of a multi-way arbiter is
attractive.  The multi-flop appears to be a solution to this
requirement [3].

1.3  Using the Multi-flop as an Arbiter

All inputs of the multi-flop are kept at logic-zero (Vlow) while there
is no service request, so forcing all outputs to logic-one (Vhigh).
Any single input going high (request) forces the corresponding
output low (grant).  Until the input has returned to low (indicating
release of the resource), requests on any other inputs have no
effects on any outputs.  If there is only one pending request, it is
clear that the multi-flop will respond to the release of the first grant
by lowering the correct output to grant access to the process which
made this pending request.  When there is more than one pending
request, the behaviour can become rather complicated, as will be
seen later on.

Simulated behaviour of a four-flop used as an arbiter is shown in
Figure 3(a) for four requests with a maximum of one pending
request at any time, and in Figure 3(b) for four requests all
overlapping in time.  It can be seen that the overall response time
is significantly delayed in the second case, with irregular
waveforms caused by metastability.  Note particularly the delayed
response to the request on u1.  Moreover, the order of responding
to the requests does not comply with their order of arrival.  The
actual order depends on small differences in the parameters of the
simulated gates.  The busy period (the time for which each process
uses the resource) was made equal for each case.
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2.   MODELLING AND SIMULATION

2.1  First-order Gate model

Many aspects of the dynamic behaviour may be illustrated with
very simple gate models.  Figure 4 shows the NAND gate model
used, comprising a cascade of a minimum-selector, the non-linear
transfer characteristic, and a linear first-order low-pass filter.
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Figure 4.   First-order model of NAND gate

2.2  Multiflop State-equations

One first-order differential equation is needed for each gate, and
the equations for a four-flop are as follows.  F is the non-linear
transfer characteristic of the gate, τ is the gate time-constant and
the gate outputs are the state-variables.
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For algebraic simplicity is convenient to normalise F so that the
digital signal levels are 0V and 1V. This makes the state-space a
hypercube with vertex coordinates at (0,1). No trajectory can go
outside this hypercube.

2.3  Metastable points

The metastable point, m, is an unstable fixed-point defined by:
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Thus, for the 4-flop:
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If the Fi are all identical and such that input and output voltages
are equal at 0⋅5V, the ‘metastable’ point, m, is at the centre of the
hypercube.

m = (m,m,m,...m)         m = 0⋅5
Trajectories typically move very slowly in the vicinity of m which
results in sluggish response and often can lead to system
maloperation.
Because the tri-flop has a state-space of only three dimensions, its
dynamic behaviour can be illustrated by means of perspective
representations in two dimensions of the trajectories in this state-
space.

3.  SMALL-SIGNAL LINEAR ANALYSIS

3.1  Dynamics around m

The conventional procedure for small-signal analysis is to linearise
around some operating point.
However, although a piecewise-linear model is being used,
investigating the behaviour of an n-flop with n > 2 around m is
complicated because the ‘minimum’ function partitions the regions
around m into n! linear segments, all meeting on the line between
the (000..0) and (111..1) vertices, passing through m.  This results
in a non-linearity exactly at m.  Any deviation from m places the
operation in one of these n! segments.
For the three-flop, the six segments are defined by:

Sijk = [xi > xj > xk,  {i, j, k} ∈ {1,2,3}, i ≠ j ≠ k]
Denoting deviations from m by ε:

xi = m + εi      for each i
the state-equations for small deviations from m while all inputs are
high are then:
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−g is the slope of F at m.  For simplicity of description it will be
assumed that the deviations are all positive, so that the state
variables in the ‘minimum’ function can be replaced by deviations.
(When this is not the case, the analysis method is the same.)  The
equations then become:

d

dt
gε ε ε ε= − − =I T A

where T is a matrix containing n ‘ones’ which selects the
appropriate elements of ε for the particular one of the n! different
segments into which the deviation from m takes the state.  If j is
the index of the smallest state-variable, and k is the index of the
smallest but one, then T has a ‘one’ in column j of every row
except j, and a ‘one’ in column k of row j.  All other elements
(including the diagonal) are zero.
The simple equation structure enables the eigenvalues to be easily
determined:

s s s g s gnI A− = + + − + +−( ) ( )( )1 1 12

The eigenvalues do not depend upon the choice of T, and it can be
seen that there is always one real positive eigenvalue whenever
g > 1, and all other eigenvalues are real and negative.  This is to be
expected, and shows that trajectories always move away from m.
The eigenvectors, which determine the direction of the trajectory,
do depend on T.

Since A I T A Q Q= − − = −g and Λ 1

Λ + = − −I Q TQg 1

For the three-flop in a segment where x1 > x2 > x3,
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In the case of the other segments, the elements of Q have the same
values, but in different locations.
For a more specific illustration of the transient leading away from
the vicinity of m, suppose g = 5 and assume an initial state
x = [m+3d, m+2d, m+d]T where d is a small deviation.
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As t increases, the second term dominates, so that
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The trajectory moves at an exponentially increasing rate and heads
for the (1,1,0) vertex.  Differing initial deviations lead to the other
(stable) vertices (0,1,1), (1,0,1).  When the initial deviation is very
small, the initial movement is very slow (e.g. the state-variables
remain near m for a significant time) which is the well-known
symptom of metastability.

The first order gate model was used for the simulations of
Figure 3, and the above small-signal analysis is sufficient to
explain the waveforms and the metastability observed in
Figure 3(b).

3.2  Trajectories towards m

Since for a NAND gate F(Vlow) = Vhigh, whenever the state-
variables are all near zero the state-equations simplify to:

( )dx

dt
x V i ni

i
i= − + =

1
1 2

τ high for , ,...

The equations are de-coupled and each gate output increases
towards Vhigh, approaching m as it does so.  Since m is an unstable
fixed point, the trajectory deviates away from m, and if the inputs
to the multi-flop are all high, finally terminates on one of the stable
vertices by means of the mechanism described in Section 3.1.  This
is illustrated by Figure 5.  In the case that the inputs are all low, it
continues past m and terminates on the (111..1) vertex.

Figure 5.  Trajectory from origin via m to a stable fixed
point

3.3  Second-order Gate model

The first-order model of Figure 4 gives only real eigenvalues,
ensuring that all transients are exponentials, with no overshoot or
oscillation in the trajectories.
By associating an additional time constant with the gate-input
(following the ‘minimum’ function), the possibility of complex
eigenvalues may be modelled, and overshoot observed in the
simulation.  This doubles the number of state equations, but there
is no significant change to the  procedure.
If all time constants are equal, it is easy to see that the six
eigenvalues of the three-flop are:

−1,  −1,  −(1 + √g),  −1 ± j√g,  √g − 1
so there is the expected real RHP eigenvalue when g > 1 and a pair
of complex LHP eigenvalues, the imaginary part of which
increases with increase in g.  Thus not only the trajectory speed but
also the frequency of any damped oscillation within it increases
with g.  This gives a qualitative indication of the behaviour to be
expected in transients around the metastable point.

4.  CONCURRENT REQUESTS

4.1  Stable states of n-flop

There are no stable equilibrium states with two or more outputs
low, whatever the inputs.
If there are (n−2) zeros in the input pattern, just two gates are left
whose outputs are not directly forced high, which form a
conventional bistable latch - with two stable states when both
inputs are high.
Similarly, (n−3) input zeros create a subsystem of three gates,
forming a tri-flop which, with all inputs high, has three stable
states, each with a single low output.  In general, for (n−r) zeros,
there is an r-flop subsystem with r stable states when all its inputs
are high.

4.2  Other metastable points

Suppose that there are p concurrent requests to an n-flop (p ≤ n).
(n − p) inputs remain low, forcing the corresponding gate outputs
high, and so these gates have no influence on the dynamic
behaviour of the rest of the n-flop.  The study of the response to
these p requests therefore requires an understanding of the
behaviour of a p-flop, the p-dimensional state-space of which is a
p-dimensional hypercube, having its metastable point at its centre.

The metastable points of this p-flop are defined as for the n-flop
(see Section 2.3) - e.g. by deleting the (n − p) state-variables which
remain high, as set of p non-linear equations remain which define
the metastable point of this situation.

Thus, for a four-flop with three concurrent requests, the
trajectories move within a 3-cube, and may involve metastability
around the centre of this 3-cube.  When there are only two
concurrent requests, the trajectories remain on a face of a 3-cube,
with a metastable point at the centre of the face (this is therefore
identical dynamics to the conventional bistable flip-flop).

Figure 6 illustrates a trajectory resulting from three simultaneous
requests to a tri-flop.  The tri-flop grants access to process 3 after a
close approach to the metastable point, m, in the centre of the cube
(denoted m3) then grants access to process 2 after approaching a
metastable point (denoted m2) on a face of the cube.  Finally, a
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normal transient leads to the grant of access to process 1 then
return of the tri-flop to the rest state.

Figure 6.  Tri-flop trajectory from 3 simultaneous requests

4.3  Overlapping Requests and Unfair Arbitration

If more than one request occurs before the first grant has been
released, the sequence of granting the subsequent requests may be
interchanged, and, as illustrated in Figure 3, metastable transients
are likely. This is because, at the instant of releasing the first grant,
the other gates have their inputs simultaneously raised to Vhigh

while their outputs are already at Vhigh.  This is a symmetrical
situation for these gates, and the precedence of the pending
requests is lost.  While inputs are rising and outputs falling, the
trajectory moves into the cube interior, sometimes very close to m,
then diverges towards one or other stable state, the selection of
which depends upon detailed differences in characteristics of the
gates rather than on the sequence of arrival of requests.  For gates
with very similar time-constants and non-linear transfer
characteristics, this trajectory closely approaches m, resulting in a
longer metastable transient than if the gates are dissimilar.

A fair arbiter could be expected to allocate the shared resource to
the requesting processes in the same sequence as the requests are
made (assuming all requests are of the same priority level) [4].
The multi-flop clearly does not do this.

5.  DISCUSSION AND CONCLUSIONS

In most systems, metastability is infrequent and seldom-observed.
In the case of the multi-flop used as an arbiter, metastable
responses can be expected whenever there are several pending
requests held by the arbiter.  At the moment of release of a
previously-accepted request, the simultaneous activation of the
pending requests typically results in a metastable transient, from
which the winner depends not at all on the sequence of arrival of
the pending requests, but on normally-small differences in the
parameters of the nominally-identical gates forming the multi-flop.

Despite its simplicity and short latency, the multi-flop structure
cannot be recommended without reservations as an arbiter because
of this likelihood of metastability and inability to maintain
sequentiality in the responses to concurrent requests.  However, its
dynamic behaviour shows interesting characteristics, many of
which can be revealed by study and simulation of simple
piecewise-linear models, and it is an interesting structure in its
own right.
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Figure 3(a).  “correct behaviour” of 4-flop arbiter:
    response to four requests at 50, 300, 550, 800.

Figure 3(b).  “metastable behaviour” of 4-flop arbiter:
response to four concurrent requests at 65, 55, 60, 50.

(some granted out of sequence)
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